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TECHNICAL NOTE 2408 -

APPROXIMATE DESIGN METHOD FOR HIGH-SOLIDITY BLADE ELEMENTS IN
COMFRESSORS AND TURBINES

By John D. Stanitz

SUMMARY.

An spproximate blade-element design method is developed for com-
pressible or incompressible nonviscous flow in high-solidity stators or
rotors of axial-, radial-, or mixed-flow compressors, turbines, or two-
dimensional cascades. The method is based upon channel-type flow
between blade elements on a specified surface of revolution that lies
between the hub and shroud (casing) and is concentric with the axis of
the compressor or turbine. The blade element is designed for prescribed
velocities along the blade-element profile as a function of distance
along meridional lines on the surface of revolution. The method is
limited, because of assumptions, to prescribed velocities that result in
blade-element profiles with gradusl variations in thickness and with
minimm radii of curvature at least approximately equal to the channel
width between profiles.

Two numerical examples are presented: The first example is the
design of a blade-element profile for a plane two-dimensional cascade in
compressible flow with prescribed velocities along the profile; the
second example is the design of a blade element for the impeller of a
mixed-flow centrifugal compressor. 1In both examples the design method
has been checked by comparing the prescribed velocity distribution with
the velocity distribution obtained by stream-filament methods from the
resulting blade-element design.

INTRODUCTION

Most aerodynamic losses in compressors and turbines result from
the viscosity and compressibility of the fluid. (Other losses, for
example, are associated with the trailing vortex sheet that sheds from
the trailing edge of the blade if the circulation around the blade
elements varies along the span of the blade.) Because the fluid is
viscous, losses result from boundary-layer friction and separation and
from secondary flows assoclated with the boundery layer. The magnitude
of these losses depends on the boundary-layer thickness, the size of
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which is controlled by the velocity distribution just outside the
boundary layer. In particular, if the velocity decelerates too rapidly,
the boundary lsyer thickens and separates, causing large mixing losses.
Also, because the fluld is compressible, significant shock losses result
if the maximum relative velocity on the blade surfaces appreciably
exceeds the local speed of sound. In addition, if the relative velocity
exceeds the local speed of sound for too great a distance across the
channel between blades, "choke-flow" conditions develop and the blade
row cannot pass the deslred quantity of fluid. By proper selection of
the velocity distribution relative to the blade surfaces, secondary-flow
losses and boundary-layer friction and separation losses can be reduced,
and shock losses and choke-flow conditions can be eliminated. With the
assumption that desirable velocity distributions can be determined from
boundary-layer theory and so forth, the problem of efficient compressor
and turbine design is resolved into the development of design methods
for blades that have prescribed velocity distributions.

In the past, a mmber of design methods have been developed for
plane, two-dimensional cascades with prescribed velocities along the
blade surfaces for incompressible flow (references 1 to 3, for example)
and for compressible flow (references 4 and 5). These cascades are
limited in application to axial-flow compressors and turbines. A method
(reference 6) has also been developed for the design of radial-flow
centrifugal impellers for incompressible flow and for a prescribed
variation in work input with radius. Recently, work has been done
(references 7 and 8, for example) on the general problem of blade
design for mixed-flow compressors or turbines in which various inde-
pendent varigbles are prescribed, but usually the relative velocity along
the blade surfaces is not.

The work presented herein is concerned with an approximate design
method developed &t the NACA Lewis leboratory for blade elements with
prescribed velocities along the profile. The method is developed for
elements of high-~solidity blades in compressors and turbines or for
plane, two-dimensionsal cascades. The blade-element profile lies on a
specified surface of revolution that is concentric with the axis of
the compressor or turbine and lies on or between the hub and shroud
(casing). The blade-element-design method is for compressible, non-
viscous fluids and, because of assumptions required by the method, is
limited to presgribed velocities that result in blade-element profiles
with gradual veriations in thickness and with minimum radii of curvature
at least approximately equal to the channel width between profiles.
(The nose and tail regions of the blade-element profile are excluded
from the approximate blade-element-design method of this report.)
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THEORY OF DESIGN METHOD

The approximate blade-element-design method is developed in two
parts. The first part, called the first approximaetion, is simple and
rapid and appears to be satisfactory for very high-solidity blades,
such as exist in radial- and mixed-flow centrifugal compressors. The
second part, called the second approximation, improves on the assump-
tions of the Pfirst part and appears to be satisfactory for blade
solidities such as exist in present-day turbine nozzles.

Preliminary Considerations

Analysis problem. - In the aerodynamic theory of compressors and
turbines there are two types of problem: first, the direct or
analysis problem in which the velocities are determined for a given
blade shape; and second, the inverse or design problem in which the
blade shape is determined for prescribed velocities along the blade
surfaces. It is the inverse or design problem with which this report
1s concerned, but by way of introduction to the design method the
direct or analysis problem will be discussed first.

One possible means of analyzing the flow through a blade row
(stator or rotor) with specified geometry is as follows: Comsider the
flow of an idesal, compressible fluid through an arbitrary channel
between blades, such as shown in figure 1. The fluid is free to follow
whatever path the pressure and inertia forces require of it. If, how-
ever, the number of blades in the blade row approaches infinity, the
space between blades approaches zero and the path of the fluid is
restricted to the curved, mean surface of the blade. (The blades
become very thin so that the two surfaces of each blade approach a
meen surface.) Under this assumption of axial symmetry (references 7
and 9, for example) the fluid flow is reduced from three-dimensional
motion in the passage between blades with finite spacing to two-
dimensional motion on the curved, mean blade surface. The streamlines
of this two-dimensional motion can be projected on the meridional plane
(axial-radial plane) as shown in figure 2. Ruden (reference 10) has
shown that, provided the blades are not too widely spaced, axial-
symmetry solutions give a good picture of the mean flow between blades.

For finite blade spacing, flow conditions vary from blade to blade
(circmferentially gbout the axis of the compressor or turbine) as well
as from hub to shroud. In order to lnvestigate the variation from
blade to blade, it is assumed that the motion of any fluld particle
bounded by adjacent streamlines in the meridionsal plane (fig. 2) is
restricted to the annmulus generated by rotating these adjacent
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stresmlines about the axis of the compressor or turbine. If the adjJacent
streamlines are sufficiently close together, flow conditions in the
annulus can be considered uniform normal to the mean surface of revo-
lution within the snnmulus. Thus the fluid motlon is reduced to two-
dimensional flow on the mean surface of revolution (fig. 3) generated

by rotating the center line between the adjacent streamlines in the
meridional plane (fig. 2) @bout the exis of the compressor or turbine.
Blade-to-blade solutions of this type are given in references 11 and 12.

Blade-to-blade solutions can be obtained for every mean surface of
revolution generated by the center lines between adjacent streamlines in
the meridional plane (fig. 2). Therefore, flow conditions can be deter-
mined approximately throughout the passage. The resulting quasl three-
dimensional solution of the direct or analysis problem was obtained by
the combination of two types of two-dimensional solution; axial-symmetry
solutions in the meridional plane and blade-to-blade solutions on sur-
faces of revolution. Such a combination of solutions prohibits the pos-
sibility of a corkscrew path, which the fluid might follow In an exact
three-dimensional solution, but it can be expected to give a better
picture of the flow than does any two-dimensional solution alone.

Design problem. - It is proposed to solve the inverse or design
problem by an approsch similar, but reversed, to that outlined for the
direct or analysis problem in the previous section. First, the profile
of the blade element on one surface of revolution (fig. 3) will be
determined for prescribed velocities along the profile. In order to
accomplish this first phase of the blade-design method, the shape of
the surface of revolution (fig. 3) is specified together with the var-
iation in height of the fluld particles (or blade element) along the
surface. The specified surface of revolution is generated by a
prescribed curve that is the center line between two adjacent stream-
lines in the meridional plane. (Ellhe curve should be smooth with large
radii of curvature, but is otherwise assumed arbitrary in shape.) The
specified variation in height of the fluid particles (or blade element)
along the surface of revolution is glven by the prescribed spacing of
the adjacent meridional streamlines that generate the anmilus around
the surface of revolution. (The variation in meridionel streemline
spacing along the center line should be smooth and slowly varying but
is otherwise assumed arbitrary.)

After the profile of the blade element on the surface of revo-
lution has been determined by deslgn methods that will be developed
in this report, the shepe of the blade surfaces that cut through
the profile of the blade element on the surface of revolution must
be obtained and the hub.and shroud contours of the blade in the
meridional pleme must be determined. A suggested method to accom-
plish this second phase of the design method (nmot the subject of this
report) is first to prescribe the blade surfaces. (These surfaces
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pass through the blade-element profile on the specified surface of revo-
lution and extend to the hub and shroud casings, which are as yet
undetermined. The prescribed shape of the blade surfaces determines
the blade taper and the thickness distribution everywhere except on

the specified surface of revolution.) The hub end shroud profiles are
then determined by a solution to the inverse or design problem in the
meridional (axiel-radial) plane sterting from the specified shape of the
center line between adjacent streamlines in the meridionasl plane and
the specified spacing between the adjacent streamlines and solving for
the variation in meridional stream function outward and inward along
normals to the meridional streamlines until the meridional streamlines
along the root and tip (hub and shroud) of the blade are determined.

The specified spacing of the adjacent streamlines together with
the known blade-element-profile thickness distribution determines the
variation in meridional velocity along the specified center line between
the streamlines. Thils arbitrary specification of the magnitude of the
velocity along a specified stream path (the center line) overdetermines
the problem and leads to singularities in the flow field. If, however,
the prescribed veloclity is reasonably consistent with the prescribed
shape of the center line and if the velocity is prescribed along the
center line at a finite number of points only, the hub and shroud
(casing) can be determined (second phase of blade-design method) by
finite-difference methods that in general are not troubled by the
singularities. The resulting hub and shroud contours can be checked by
a direct solution for the shape of the streamline corresponding to the
prescribed center line and for the spacing of the adjacent streamlines.
If the egreement with the prescribed center line and spacing of the
adjacent streamlines is not good, either a new center line or a new
meridional velocity distribution (spacing of the adjacent stresmlines)
or both are prescribed and the entire blade-design method is repeated
until satisfactory agreement is achieved.

Thus the entire blade geometry can be determined for specified
velocities along the profile of a blade element on one surface of
revolution, which surface is specified together with the arbitrary (but
smooth) variation in height of the fluid particles (or blade element)
along the surface. Only the first phase of the proposed blade-design
method will be considered in this report; that is, only the profile
of a blade element on one surface of revolution will be determined for
prescribed veloclties along the blade profile. If the hub-shroud
(root-tip) ratio of the blade is sufficiently large and if the speci-
fled shape of the center line between meridional streamlines has suffi-
clently small curvature, the second phase of the design method can be
neglected, as is customarily done in the application of plane, two-
dimensional cascade data to the design of axial-flow compressors and
turbines, for example.
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Coordinates. - The cylindricel coordinates R, 0, and Z are shown
in figure 3. (All symbols are defined in sppendix A.) These coordinates
are dimensionless, the linear coordinates R and Z having been divided
by a characteristic length equal to the chord c of the blade element
(the exact definition of c¢ will be given later). The coordinate system
is oriented with its Z-axis along the axis of the compressor or turbine.
The coordinates are flxed relative to the blades so that the coordinate
system is absolute if the blades are stationary (stators) and relative
if the blades are rotating (rotors). The angular velocity o for
rotors is always positive (right-hand rule) about the Z-axis, as shown

in figure 3.

An elemental distance dS in the direction of flow (that is,
coinciding with the veloclty vector) has componente dR, Rdf, and d%
(fig. 3). The projection of dS on the meridional plane is given by
dM in figure 3. The elemental distances 48 &and dM help to define
two angles o &and B, where, from figure 3,

dR = dM sin a (1a)

dz = dM cos o (1v)
and

dM = aS cos B (2a)

RA6 = A4S sin B (2p)

Because 48 and dM are always positive and finite, equation (Za)
requires that )

-7t 7t
z<P<2

From equation (2b) and figure 3, B> 0 for positive values of RAH, and
B< 0 for negative values of RAH. Because both 4dS and dM 1lie on
the surface of revolutlion, the angle B is the flow direction measured
on this surface and is positive to the right when the exterior of the
surface is viewed in the direction of dM (fig. 3).

In general, dZ can have both positive and negative values. 1In any

blade row of most compressors and turbineg, however, dZ will always
have the same sign, which in this report shall be considered positive

(or zero), so that from equation (1b),

-7 14
— —
=023
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For inflow machines (fig. 4(a)), AR is negative in the direction of
@ and for outflow machines (fig. 4(b)), dR is positive, so that
from equation (1a),

-'% <a< 0 (inflow machine)

O<a< 12t- (outflow machine)

For axial-flow machines, dR approaches O so that, from equation (1a),
o 1s approximately O.

Veloeity components. - The velocity Q relative to the coordinate
system has components Qr, Qg, and Qg in the R-, 6-~, and 2Z-
directions, respectively (fig. 3). These velocities are dimensionless,
having been divided by a characteristic velocity equal to the absolute
stagnation speed of sound a, upstream of the blade row, where

80l = T&RT, (3)

in which R is the gas constant, 1 1s the ratio of specifig¢ heats,

g 1s the acceleration due to gravity, T is the static (s‘bream) tem-
perature, and the subscript o indicates stagnation conditions upstream
of the blade row. For rotors, the tip speed of a blade element Up is

likewlse dimensionless and is defined by

Up = mirc (4)
(o} .
Thus, if
R* = % (5)

the tangential velocity of the blade at any radius R 1s equal to R"UT

and the absolute tangential velocity of the fluid is equal to
(R*Up + Qg). For stator blades, ® 1is zero and therefore Up 1is zero.
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In addition to the three camponents of the relative velocity Qg,

Qg, eand Qgy, 1t is convenient to define a fourth velocity component,

lying in the meridionel plane and defined as the meridional velo-
city Qu, where from figure 3,

Qg = Q cos B (62)
Also from figure 3,

Qg = Qy sin a (6b)

Q =Qsin B (6c)
and

Qz = @y cos @ | (64)

Fluid particle. - As shown in figure 5, a fluid particle on a
surface of revolution has the dimensions RAA, dM, and AH. The dif-
ferential angle df is measured in a plane normal to the Z-axis
(fig. 5) and the differential distance dM 1is related to the differ-
entigl radius 4R by

dR

dM=ssincx.

(1=)

The incremental height AH (figs. 2 and 5) is measured normal to the
surface of revolution and is determined by the specified spacing of the
adjacent stresmlines in the meridional plane (fig. 2). The incremental
height AH is dimensionless, having been divided by the characteristic
length c¢. The height ratio H* of the fluid particle (fig. 5) is
defined as the ratio of the incremental height AH of the blade element
at radius R to the incremental height (AH)p of the blade element

at Rp.

Thermodynsmic relations. - From the general energy edquation, the
static (stream) temperature can be shown to be related to the relative

velocity Q by (reference 11)

% =1+ %}- |:(R"'UT)2 - Q2 - 20 7‘[]] (7)

AN
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where the subscript’ U refers to conditions upstream of the blade row
and where A 1s the whirl ratio (ebsolute moment of momentum divided

by cRpay) &lven by
A = R*(E*Up + Q) (8)

The pressure ratio P and the density ratio p/ po are likewise
related to the relative velocity Q by

= =
- g ¥-
and
1 1
. r-1 -1
E)P; = (ﬁ) =41 + T— [(R*UT)Z Q2 - ZUT AU] (20)

First Approximation

The first approximation gives a rapld means of computing the blade-
element profile on any specified surface of revolution (with specified
varigtion in H ) for prescribed velocities along the profile. The
method is bhased upon one~dimensional., channel-type flow between blade
elements.

Assumptions. - For the first approximation, it is assumed that on
the surface of revolution in the direction of 6 (that is, for a glven
value of M) flow conditions mey be considered uniform and equal to
mess~welghted average values. This assumption is usual for one-
dimensional, channel-type analyses, except that conditions have been
conslidered uniform in the direction of 6 rather than along a line
normal to the average direction of flow. In particular, it is assumed
that at a given value of M: (1) The mass-weighted average flow direc-
tion is equal to the direction of the blade-element camber line, and (2)
the mass-welghted average velocity is equal to one-half the sum of the
prescribed velocities at the two blade-element surfaces. Assumption (1)
is approximately true for high-solidity blade elements with gradual
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variations in profile thickness and is exactly true for infinite soli-
dities. Assumption (2) is approximately true if the velocity distri-
bution across the chsnnel in the 8-direction is linear, a condition
that is approached for high-solidity blade-element profiles with mini-
mm redii of curvature at least approximately equal to the channel
width between profiles (see fig. 15 of reference 11 and figs., 7 and 16
of reference 13).

Flow field. - A view on the 6M-plane of the passage between two
blade-element profiles is shown in figure 6. The flow field considered
by the blade-element-design method lies between the profiles of the
blade elements and between two parallel lines normal to the direction
of Qy and located close to the leading and tralling edges of the
blades, as shown in figure 6. The immediate nose and tail regions have
been excluded from the flow field considered by the blade-element-—design
method, because the small radii of curveture along the blade-element
profile in these regions result in distributions of velocity and flow
direction circumferentially across the channel between blade elements
that do not satisfy the assumptions of the design method in’ these
regions. In the final design, the nose and tail contours are rounded
off in a mennmer guided by experience.

By definition, the characteristic length ¢ (blade chord) is equal
to the distance (not dimensionless) between the n- and t-boundaries
\(fig. 6) along a meridional line. Thus, the meridional dlstance M
(dimensionless) when measured from the n-boundary is equal to 1.0 at
the t-boundary.

The blade solidity o is defined by

1

= I (11)

which, from figure 6, is the ratio of the blade chord c to the blade
spacing at the tip of the blade element cRp(A8) vhere (a8) is the

angular spacing of the blades.

The ratio of channel width R(Gl-—eo) to blade spacing R(AG) at
a given value of M is defined by

01-6¢

A8 (12)
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vhere the subscripts O and 1 refer to the ‘blade surfaces at the left
and right of the channel walls, respectively, when viewed in the direc-
tlon of Q. Thus, from equations (5), (11), and (12), the blade
spacing (fig. 6) at a given value of M is equal to R*/o and the -
channel width is equal to &R*/o.

Prescribed velocities along blade-element contour. - In the pro-
posed design method, the velocities Qp and Q; along the blade-
element profile on the surface of revolution are prescribed as func-
tions of M.

Outline of method. - The object of the design method is to deter-
mine the blade-element profile (on a specified surface of revolution
with specified variations in ) for prescribed velocities along the
blade-element contour and for prescribed flow conditions (whirl ratio
and flow rate) upstream and downstream of the blade-element row. An
ingpection of figure 6 shows that the blade-element profile is caom-
Pletely described by the solidity o and by

5 = 5(M) (13)

and
B = B(M) (14)

These quentities o, ®, and P can be determined (approximately)
from the prescribed velocities Qp and Q; and from the prescribed
upstream and downstream conditions in a manner outlined as follows:

(a) The solidity o 1s determined by the blade-element spacing, which,
for a glven flow rate, depends on the specified change in whirl ratio
upstream and downstream of the blade-element row and on the totel blade~
element torque; (b) the flow direction B at each value of M is
obtained by equation (Bc) from the average values of Q and Q. The

average value of Q 1is by assumption equal to one-half the sum of Qg
and Q). The average value of Qg at M is determined by the blade-

element torque between M = O and M;  end (c) the ratio & is deter-
mined from continuity considerations.

Solidity o. - The blade-element solidity is determined from the
condition that the rate of change of moment of momentum of the fluid
flow between two blade elements must equal the torque of the blade ele-
ments on the fluid. For a fluid strip of width c¢dM between blades
(fig. 7) the torque of the blade elements is given by

u‘!'
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- [pote®)  [ctemp By [em] [etas)] (15)

where
AP =Py - B, (16)

in which P 1s determined from equation (9) and from the specified
velocities Q1 and Qp.

The rate of change of moment of momentum of the fluid flow across
the strip in figure 7 is given by

d .
cpn, S T8 g (17)

where b 1s the nunber of blade elements (or passages between blade

elements) 5 ATW is the incremental. flow rate across the fluid strip

(fig. 7) so that Aw is the total incremental flow rate along the sur-
face of revolution, and the subscript av refers to the mass-weighted
average value in the circumferentiael direction across the channel
between blade elements at a given value of M.

Equating the quantities given by (15) and (17) and introducing the
perfect gas law (p = pRT) glve

ANy g ke
= = %H"‘R AP (18)

where the flow coefficient @ is defined by

1 Aw
= —— -(——T— 19
¥ poa'o AF T ( )

where (Af)T » ‘the totel (blocked plus unblocked) incremental annulus
area normal to the direction of Qy at the blade-element tip, is given
by
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(o) = o] [eng] [elomg] (20)

Thus Aw/(Af)p in equation (19) is the flow rate per unit total area
at the blade-element tip.

The whirl ratio A, varies from )‘U to )‘D as M varies from
0 to 1.0 so that equation (18) integrates to give

- An - A
_ =1 %0 -y (21)
f\lﬂ*R"' (aP) aM

0

where HE', R*, and AP are known functions of M so that ¢ is
directly determined by equation (2L1).

Average relative tangential velocity (Qg)gye - The mass-weighted
aver <e relative tangential velocity at any specified value of M is
c+sined by Integrating equation (18) from M=0 to M so that

Nav =My = - 5 | E'E (2B) au
0

which, from equation (8), becomes

A
(Qp)ay = ¥ - KU - Tﬁwj‘w B'R* (aP) au (22)
0

vhere o is known from equation (21) so that (Qglgy 1s directly
determined by equation (22).

Flow direction B. - From equation (6c) and from the assumption
that Q@ and B may be considered constant for any given value of M

in the direction of 8 between blade elements on the surface of revolu-
tion,
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B = sin~L [(—i—qe-)iﬂ (23)

where, as already stated under the assumptions, the average value
of Q is

Qav = @_;:Qg:‘ (24)

Equations (22), (23), and (24) determine the flow direction B as a
function of M.

Channel-width ratio ®. - The channel-width ratio is determined by
continuity considerations. The incremental flow rate Aw/b across the
fluid strip in figure 7 is given by

2 e e b2 s oo

from which, together with equations (12), (19), and (20),

5 = 5 ? (25)
R*E* —S‘_v. Q,, cos B
(o]

The ratio pgy/p, 15 given by equation (10) with Q equal to Qgy-

Equation (25) determines & as a function of M. Upstream and dowm-
stream of the blade-element row, & equals 1 so that from equation (25),

P = (R*H"‘ 59; Q cos B)U = (R*H* b&. Q cos B)D (26)

o

which determines a relation that must be satisfied between

PER* Be- Q cos B upstream and downstream of the blade-element row.
o
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Blade-element-profile coordinates. - The value of ¢ has been
determined, and & and B are known functions of M 80 that the
design of the blade~element profile on the surface of revolution is
camplete (see equations (13) and (14)). The coordinates of the blade~
element profile on the surface of revolution are obtained by (1) com-
puting the shape of the profile camber line (fig. 6) on the surface of
revolution, a.nd-(z) distributing the blade thickness equally on either
side of the camber line.

The shape of the profile camber line is given by R and 6 as
functions of M. Because R (or R*) is a known function of M, it
only remains to determine RO as a function of M 1in order to dbtain
the profile camber line. Along the ceamber line,

a(re) _ _ de dR
-ttt O

which beccmes, when combined with equations (1a), (2a), and (2b),

a(re) _
=~ =tan B + 6 sin @ (27)

The change in R from O at M =0 to R at M 1is obtained by
integrating equation (27) to yield

Re =fM (tan B + 6 sin o) aM (28)
0

Because R (or R*) is a known (specified.) function of M, equa-
tion (28) determines the blade-element camber line on the surface of
revolution.

The blade thickness in the 8~direction is obtained from the
channel-width ratio & and is given by

R*
R(49) (1-8) =~ (1-5) (29)
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This expression for the blade thickness is dimensionless, and is
expressed, as usual, In units of characteristic length c¢. The blade
thickness 1s equally distributed on either side of the camber line.

The blade-element spacing on the surface of revalution is given
directly by the solidity o.

Second Approximatian

The second epproximation modifies the results of the first approxi-
mation by estimating the varistions in flow conditions in the
O-direction between blade elements on the surface of revolution.

Assumptions. - The major assumption of the second approximation is
that, for high-solidity blade-element proflles with minimm radii of
curvature at least approximately equel to the channel width between
profiles (except at the nose and tail), flow conditions and products of
flow conditions devigte only moderately (a.nd smoothly) from a linear
variation in the 6-direction across the chanmnel between blade elements.
Therefore, integrals involving the variation in the flow conditions
(@ and B, for example) in the 6-direction can be evaluated by numeri-
cel methods using two-strip integration formilas (that is, assuming
parsbolic variations in the integrand).

In reference 13 it is shown that, for a high-solidity two-
dimensional cascade with large turning angle and with a minimum radius
of curvature along the blade-element profile (exclusive of the nose
and tail) somewhat less than the channel width, the variations in Q,
Qcos B, and Q sin B can be represented in the 8-direction by a
pargbola. Also, for curved channels constructed from concentric stream-
lines of a potential vortex it is easily shown that, if the smaller
radius of the channel walls is equal to the channel width, the velocity
at midchannel is only 11 percent less than that given by a linear
varietion across the channel. Thus for this type of channel, if the
minimm redius of curvature is at least approximstely equal to the
channel width, the velocity distribution deviates only moderately (and
smoothly) from a linear variation and may therefore be represented by
a parabola.

Flow field. - In the second approximation, the flow field on the
surface of revolution is limited, as before, by the n- and t-boundaries
(fig. 8). The flow direction B and the velocity Q vary in the
6-direction across the channel between blade elements, so that for
constant M

B = B(X)
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and
Q = q(x)

where X dindicates position across the channel in the 8-direction in
ercent of total distance between surfaces of adjacent blade elements
fig. 8)

6"90
* = oo (o)

Each streamline in the channel between blade elements is designated by
the value of the stream function V along the streamline where , for
convenience, the stream function is defined as the ratio of flow rate
between the streamline and the left side of the channel, when viewed
in the direction of @, %o total flow rate between blade elements.
Thus, the O-stresmline, as indicated by the zero value of V¥, flows
along the left channel wall (fig. 8); the 1.0-streamline flows along
the right channel wall; and the 0,5-streamline equally divides the flow
between blade elements. Numerlcal subscripts on B, X, and the
velocity Q refer to the streamlines at which these quantities are
considered. Thus, Bg,5 and Xg,5 refer to the values of B and X

slong the 0.5-streamline (fig. 8).

Outline of method. - An inspection of figure 8 shows that the
blade-element profile on the specified surface of revolution (with
specified variation in H¥) 1is completely described by the solidity o
end by

Xo.5 = %o,5(4) (31)
Bo.5 = Bo.5(M) (32)

end
5 = &5(M) (33)

These quantities (o, Xo.5, Bo.5, and '8) can be determined (approxi-
mately) from the prescribed velocities Q; and Q; and from the pre-

scribed upstream and downstream conditions in a manner outlined as
follows:
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(a) The solidity o is the same as determined in the first
approximation,

('b) The f£flow directions (approximate) on the blade surface Bc')
and Bi are cobtained at arbitrarily speeified values of M from the
blade-element profile determined by the first approximation or by the
previous cycle in the iteration calculations to be used in the second
approximation. The superscript prime (‘) indicates values obtained
from the first approximation or from the previous cycle in the itera-
tion calculations.

(c) The ratio X5 5 is approximately determined at specified

values of M Pfrom continuity considerations u§ing the prescribed values
of Q end Q end the values of B) and B, obtained by (b).

(d) The velocity Qp,5 at Xp 5 1s estimated at specified values
of M from considerations of absolute irrotational motion.

(e) The angle Bg.5 is approximately determined at specified
values of M from the known value of (Qg)gy (equation (22)) assuming

(see section Assﬂtions) that integrands eonsisting of the product of
various flow conditions can be represented by parabolas that pass
through known (or estimated) values of Q, B!, and pfp, at X

equal to 0, Xg.,5, and 1.0.

(£) The channel-width retio & is approximately determined at
specified values of M from continuity eonsideretions assuming again
that integrands consisting of the product of various flow conditions
can be represented by a parabola.

(g) From the values cbtained for Xy 5, By.5, and B, a blade-
element profile is determined so that new values for B(') and Bi can

be obtained in (a) and the process repeated until the values of Xg. s,
Bo.5» and B converge.

Flow directions Bé and Bi. - In order to obtain the flow direc-
tion B(‘) along the blade-element profile determined by the first

approximation (or by the previous cycle in the iteration calculations
of the second spproximation), equation (30) is written

| S T - 1 t_9
90 90.5 X0.5 (el 90)
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or, from equations (11) and (12),

8'
W —_ 1 - t —_—
85 = 95.5 =~ %o.5 Rgo

which, after differentiating with respect to M and multiplying by R,
becomes

g* d(XH 5 ')
taa gy = tan 8 g - T 0S0D (50

In like manner,

g* d [-l-X‘ sr]
ten B! = tan By o + — ( @?-5) , (35)

Equations (34) and (35) determine B) and B;. For the first cycle in

the second gpproximation, X6.5 is equal to 0.5 (equivalent to the

assumption in the first aspproximation thet the shape of the mean (0.5)
streamline is the same as the blade-element camber line) , and 3' and
B(') 5 are equal to 8 and B from the first approximation. For sue-
ceéd:mg cyeles in the iteration calculations of the second approxima-

tion, B(').S, X6 57 and &' are obtained from the preceding cycle.

Retio Xp.5. - From the definition of the stream function 1V,

fx—pE-Qcosde
0 (o]

¥ =7 (36)
f L. Q cos B d&X
0 Po

For the 0.5-streamline, ¥ equals 0.5 and X equals Xg,5, 8o that
with B equal to B' equation (36) becomes
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"X0.5

bP— Q cos B! &X

0
0.5 = 22 (36e)
Fl.O

bE-Q, cos Bt dX
Jo o

If the integrand (-‘-3% Q cos B') in equation (36a) deviates only

moderately from a linear variation in the X-direction (see section
Assmtions), it can be shown (appendix B) that, if a linear varia-
tion im the integrand is assumed in equation (36a), the value of X0.5
obtained from eguation (36a) is approximately equal to the value
obtained by representing the integrand by a parabola. That is, for
moderate deviations of the integrand from a linear variation, the value
of Xp,5 depends more on the magnitude of the integrand at X

equels O and 1.0 +than on the magnitude of the deviation. If a
linear variation in (5% Q cos B!) with X is assumed, equation (36a)

becomes

1 2
kX5 +3%0.5

0.5
k+ L
2

or

%o.5=-kt, Bkt (57)

where

(-‘;L Q cos B')O

[¢]

k =
(Ep_ Q cos B') - (b& Q cos B')
o 1 © 0

(37a)
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The value of Xgp,5 at each value of M. 1is determined by equa-
tion (37). These values of Xg,5 cen be used to compute new values

of B(') and B]'_ by equations (34) and (35), and these new values
of B} and B] result in new values of X, o from equation (37). This

iterative process converges rapldly and, in general, the second value
of Xg.5 oObtained from equation (37) is sufficiently accurate.

Velocity Qp.5. - The velocity Qp,5 1s glven by the following
equation (obtained from equation (C8) in appendix C):

Q.5 = [QOJ’%(E*%)*%]“P (4 X5 5) '%(E‘L:LFT*FXO.S) ‘1%

(38)
vhere A 1is obtained by trial and error from
1 - A
[0 -2 w]+oftooe ]
= - C9
’ (E fE)[ioem ()] F (©)
A A A
where
B = 2L R* cos B! . sin B! (cs)
(o] 0.5 0.5
5! _x ' sin o
C =25 R¥Up cos By 5 ~- (c7)
dQ
E = -ai (CS&.)
dey  dQg
- T 20 c
P (C3b)
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For small values of A, +the numerical solutions of equations (38)
and (C9) involve small differences of large nmumbers. In order to eli-
minate this condition, the equations can be expanded in the following
series form: !

Q.5 =% X (A X g) +BEXy 5+ CXy 5+

Xg.5% A Xg 55 A% Xy gt .

(BEA + BF + CA) | -7+ T + T (38a)
and
1 . A , AZ
5 [Ql-Qoe@(Aﬂ—C—CA(-Z—Z—+-3—I+;—I'+...) (Cg)
= - a
1 , A , A2
E-l-(EA-I'F) (§?+3~?+'4:—:-+...)

in which forms the calculations are more easily carried out for small
values of A.

Flow direction By 5. - At any position (X,M) in the chennel
between blade elements, the flow direction g (determined by the second
approximation) is relsted to the uncorrected flow direction B8°* (deter—
mined by the blade-element profile of the first gpproximatlion, or by the
profile of the previous cycle in the iteration calculations of the
second approximation) by

B =8t +18 (39)

where AB is the -correction added to B!'. In general, for a given
value of M, the correction AR varies with 6, but it can be shown
(appendix D) that in the dirvection of 6, if (ten B - tan Bg.g) is
small {a condition that is approached in high-solidity blades with
gradual veriations in blade-element-profile thiclcness‘){ and if ABg,5 is
small, then

48 = DBy 5

The correction AP is therefore assumed constant across the channel
between blade elements. Thus, for example, equation (39) becomes
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=By g + OB (40)

The correction A8 is determined from considerations of i..',he
average relative tangential velocity, which is defined by

j\l-ﬁ&stinBcosBdX
0 0

(Q'B)av = (41)
f £ Q cos B X
D
0 (o]
From equation (39) with AR assumed to be small,
cos B = cos B! - AR sin B! (42a)
sin B = sin B' + AB cos B! _ (42b)
and
sin B cos B = %sin 281 + A8 cos 28! (42c)
From equations (41) and (42),
1 1 1
o[- [
o] 0 (o] (43)

= l i
2
L B%Q cos 28° dX+(Q9)av0 b%Qs:Lngth

Iet I be any one of the integrands in equation (43); then if I
varies in a parabolic mamner (see section Asg@tions) across the
channel between blade elements,

I =ea+ebX+ecX2
so that
Ip =1¢g
I0.5 = eg + &b X0.5 + e¢ X0,5°
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and
I1=ea.+eb+ec
Therefore,
1 3 X0,5 -1 1 3 %0.5 - 2
1d&X == |IH~—————r]-1 + I f——
\,El 2 O( 3Xo.5) 0'5(3%.5 (Xo.s‘l)) 1(5%.5'5)

(44)

(With X5 5 equal to 0.5, equation (44) reduces to Simpson's one-third
rule for numerical integration.)

The direction Bg.5 1s therefare given by equation (40) in which
A8 is obtained from equation (43) vwhere the integrals are determined by
equation (44). (The values of Q, p/p,, and B' comtained in I,
Io.5, and I of equetion (44) are known. For the first cycle of the
second approximation, B(') 5 is equal to B obtained by the first

approximation and for succeeding cycles of the second approximation,
B(') 5 1s obtained from the preceding cycle.)

Channel -width ratio &. - From continuity consideraticms of the
fluid flow across the strip between channel walls in figure 7,

0 .
1
é%f_=[cﬂ* (AH)T] (cR* RI)L o aopeo-QcosBdG

0

vwhich, fram equations (12), (19), (20), and (30), becames

m:BH"‘R*flbp—QcosBdX
(0] o

or, from equations (39) and (42a),
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®

5 =
H*R*[fl-ﬁchosB'dX-Aﬁflb&QsinB'd%
0 (o] 0 (e}

Equation (45) determines the channel-width ratio. The integrals in
equation (45) are given by equation (44).

(45)

The velues of Bp,5 and O obtained by the first cycle of the
second approximation can be used to determine new values of Bé, BJ'_,

Xo.5» and Qg 5 from which new and presumably better values of Bo.s
and 8 can be determined. This iterative process can be continued
until the values of Bp,5 and & converge. In general, the iterative
process converges rapidly and, in many cases, only the first cycle of
the second approximation is necessary.

Blade-element-profile coordinates. - The value of O has been
determined, and R*, H*, Xgo.5, Bp.5, and © are known functions
of M so that the design of the blade element is complete. The coordi-
nates of the blade-element profile on the surface of revolution are
obtained as indicated in figure 8 by (1) computing the shape of the
0.5-streamline, which is obtained from Bg. g5 = BO_5(M), (2) distri-
buting the channel width on either side of the 0.5-streamliine according
to Xo.5 = Xg.5(M), and (3) obtaining the blade profile from the
channel shape and from the spacing of the channels, which spacing is
determined by o.

The shape of the 0.5-streamline is given by R and 6 as func-
tions of M. Because R (or R*) is a known (specified) function
of M, only (R0)g.5 remains to be determined as a function of M.

From equation (28), which assumes RO is zero at M = O,

(R8)o.5 =j;M (tan By 5 + 6 sin @) @M (486)

Equation (46), together with the specified variation in R, determines
the shape of the 0.5-streamline on the surface of revolution.
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' The channel width is g R* of which ZXg.3 S-R* is distributed

to the left of the 0.5-streamline and (1 - Xo.5) %R"' is distributed

to the right (when viewed in the direction of @Qy, fig. 8). The
expression far the channel width is dimensioniless and is expressed, as
usual, in units of characteristic length c.

The blade-element profile results when the adjacent channel 1s
laced with the spacing between 0.5-streamlines equal to R*/ g
fig. 8). The blade-element profile is closed by rounding-off the nose
and tail in a manner guided by experience.

APPLICATION OF DESIGN METHODS

The application of the first and second approximations of.the
blade-~element-design method is considered in this section.

Types of blading. - The blade-element-design method developed in
this report applies to campressible or incompressible flow in stators or
rotors of radial-, axiasl-, or mixed-flow campressors, turbines, or two-
dimensional cascades. The design of any particular blade element
depends on which of the preceding categories describe the application
of the blade element. Each category determines the magnitude or sign
of various parameters that appear in the equations developed for the
design method.

The blade element is first classified according to the compres-
sibility of the flulid for which it was designed. For compressible
fluids, the density ratio p/p, varies accarding to equation (10);

for incompressible flulds, the density ratio is constant and equal to 1.

The blade element is next classified as a stator or rotor. For
stators the angular velocity @ 1s zero so that the tip speed Ugp is
zero (equation (4)); for rotors the tip speed is positive. (Note that
the angular velocity is always positive (right-ha.nd rule) about the
Z-axis (fig. 4).) .

The blade element is next classified as inflow, axial flow, or
outflow. For inflow blades (fig. 4(a)), the radius R decreases in
the direction of M; thus from equation (la) the angle o 1is less than
zero. For axial-flow blades, « approaeches zero. For outflow blades
(fig. 4(b)), the radius R increases in the direction of M so that o
is greater than zero.



NACA TN 2408 27

The blade element is also classified as a eompressor, turbine, or
two-dimensional-cascade blade. In the case of rotor blades, Q1 is

greater than Qy for compressors, and Q) 1is less than Qo for tur-

bines. For plane two-dimensional cascade blades, the surface of
revolution becomes a fiat plane, and

E* = 1.0 w

R*=1.0

R =
}Rd@:dﬂ? (47)

de =0
a =0
Up =0 J

vhere N 1is the coordinate distance measured normal to M on the flat
plane of the two-dimensional cascade.

Prescribed upstream and downstream flow conditions. - The designer
of blade elements is generally given the upstream end downstream flow
conditions for each blade element. These flow conditions are:

(1) specified surface of revalution R* = R*(M), (2) specified height
ratio H* = E*(M), (3) upstreem and downstream whirl ratios Ay

and Ap, and (4) the flow coefficient ¢ (equation (19)).

For axial-flow blade elements, R™ and H* are considered con-
stant upstream and downstream of the blade-element row so that the
quantities Qg, By, Qp, and PBp are constant. It is therefore cus-
tomary to specify any three of these quantities (instead of >‘U’ >‘D’
and @); the fourth quantity is then determined from continuity con-
siderations (equa‘tion (26)). For radial- or mixed-flow blade elements,
however, R* and H* generally vary upstream and downstream of the
blade-element row so that (Q and B)y and (Q and B)y vary and it
is more convenient to specify the upstream and downstream conditions by
the quantities Ay, Ap, and @, which are always constant.

Prescribed velocities along blade-element profile. - In this
blade-element-design method, the prescribed velocities Qp and Q; on
the blade-element surfaces are specified as functions of the meridional
coordinate M, rather than as functions of the arc length S, along
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the blade-element profile. Any relation between Qp ahd @ and M
can be prescribed, but, if a physically acceptable blade-element profile
is desired, and if gradual variations in blade-element+profile thickness
together with a minimm radius of curvature at least approximately equal
to the channel width is desired in order to satisfy the assumptions of
the design method, the prescribed relation mmst exhibit the following
features:

(1) In qrder to avoid negative blade thicknesses, which result
when the channel width in the circumferential direction is greater than
the blade spacing (that is, when & > 1.0), the average velocity Qgy,

defined by

Qav = = (30 + @) (24)

mist not be too low. As indicated by equation (25), the minimm allow-
able value of Qgy depends, among other things, on the value of 8,
which unfortunately is not known until the blade element has been
designed.

3
(2) In order to obtain desirable blade-element thicknesses %(l-&)

at the n- and t-boundaries (fig. 8, for example), the specified values
of (Qgy)n ®md (Qay)y must be approximately equal to the values given
by equation (25) for specified values of & and estimated (not yet
known) values of PB. These values of Qgy must be adjusted later if
they result in undesirable blade-element thicknesses in the final cal-
culations.

(3) In order to cobtain a physically desirsble rate of increase of

blade thickness near the nose, <d;9-4v) at M = 0 mst have a suitable
n

positive value, which 1s best determined from experience and which
depends on the unknown solidity (to be determined), on the unknown
variation in B with M (to be determined), and on the presecribed
veriation in R'E* with M. Likewise, to obtain a desirable rate of

decrease of blade thickness near the tail, (%I A at M =1.,0 must

have a suiteble low, perhaps negative, value, which also depends on
the solidity and on the varigtion in B and R*E* with M.
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(4) In order toc obtaln the fewest blades (tha.t is, lowest solidity)
possible, consistent with other requirements and limitations, it is
desirgble that the blade loading AQ, defined by

=9 -9 (48)

be as large as possible over as great a range of M as possible. This
fact is indicated by equation (21), because AP increases with AQ.
Thus, it is generally desirable to prescribe blade loading even at the
nose and tail (n- and t-boundaries, fig. 8). The blade is then assumed
to load and unload over the regions that correspond to rounding-off of
the nose and tail, respectively. The loading (AQ), and (AQ)¢ must
not, however, be too large; otherwise assumptions of the design method

are violated. For example, if AQ 1s large in the vicinity of the
nose or talil, this sudden loading or unloading of the blade can be

expected to cause B, Q, and % to deviate greatly (and in a sudden

manher) from a linear variation in the 6-direction (which deviation
violates the assumption of the blade-element design method that the
deviation is smooth and moderate). The maximum loading (AQ), should
occur at some velue of M between, but not close to, the nose and
tail (0< M < 1.0).

(5) The prescribed veriation in Qg and Q with M should be
smooth with gradual variations in 5199_ and @; Sudden variations in

a a
dQo dqy.
5— and —— result in small radii of curvature locally on the blade-
aM
element profile (such as occur at the nose and tail, for example) and
cause B, Q, and %}% to deviate greatly (and in a sudden manner) from

a linear veriation in the 8-direction.

One possible way of incorporating the preceding considerations in
the prescribed distributions of Qp and Q. is given by

W = gy - % (492)
Q = Qy + 5 (49p)
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Wwhere

Quy = 0y + & M + 3, M% + dg M3 (50a)
and

£Q = §g + Iy M+ j, M2+ 54 M3 (50b)

The coefficients
from the following conditions:

Qav = (Qav)n
Qav = (Qav)t

Oy _ (anv)
a ™ /g

gy (dqav)
a a /i
Q= (29),
29 = (M)
29 = (M)
a aﬁQ) — o

so that

at

at

at

at

it

d end j in equations (50a) and (50b) are obteined

1.0

£
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\
dp = (Qay)n
dQqy
o - (%),
(51)
de = 3 [(Qav)'b - (Qav)n] - (i-?gi_v)t -2 (%W)n
dQgy d
dg = (%)n + (%)t ~ 2 [(Qav)t - (Qav)n]
and
Ja = (AQ')I]. )
I N 4 _ a2 -
e (1%)2[ (80), (* - 32 + )
(2Q)p (a4,2 - 20y) + (AQ)4 (%4)]
R S -
Je .Mmz (l-Mm)z [(AQ)n (ﬂ'im My~ + 1) + r (52)
(aQ), (3% - 1) - (AQ)y (%3)]
-1 | 2 _ -
da = Mp2 (1-Mp)2 [ (8Q)n (0" - 2y + 1)
(0Q)n (My-1) + (2Q)4 (Mmz)] J

Equations (49a) and (49b) are a suggested means of prescribing
satisfactory distributions of Qp and Q1; any other method that

results in acceptable blade-element profiles can be used.
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Outline of numerical procedure. -~ The following outline of +the
numericael procedure includes both the first and second approximations.
For convenience, the cutline is divided into four parts: (I) Speci-
fied Conditions, (II) Preliminary Calculations, (III) First Approxima-
tion, and (IV) Second Approximation:

I - Specified Conditions

(1) specify R = R(Z), which determines the specified surface of
revolution and from which is obtained the constant Rp and the rela-

+ions
R * = *(:M)
and

o = a(M)

(2) speciry E* = H*(M).

(3) Specify Ay, Ap, and P, vhich determine the flow conditions

upstream and downstream of the blade elements. (For axial-flow
blade elements, it is customary to specify (instead) any three of the
quantities Qy, By, Qp, and PBp; the fourth quantity is then deter-

mined by equation (26) in which _ﬁp_ is given by equation (10). The

quantities Ay, Ap, and @ are Phen determined by equations (8)
and (26)).

(4) Specify Ugp, which is zero for stators.

(5) Specify Qg = Qo(M) and Q1 = Q(M).

(Use equations (49a) and (49b) or any other arbitrary method. These
prescribed values of Qp and Q) may have to be adjusted later %o
result in physically acceptable blade-element profiles on the surface
of revolution.)

II - Preliminary Calculations

(1) Compute AP as a function of M from equations (9) and (16).

(2) Compute the solidity o from equation (21) by numerical inte-
gration.
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(3) Compute number of blades b from

_ 2x
b =22 (53)

where A9 1is obtained from equation (11). If the number of blades is
not an integer, the solidity o must be changed by adjusting any or

\L

all of @, Ap, Ay, and f H*R*(AP) dM, as indicated by equa-
0

tion (21).

(4) campute (Qg)gy @8 a function of M from equation (22) by
numerical integration.

IIT - First Approximation
(1) Compute Quy as a function of M from equation (24).
(2) Campute B from equation (23).
(3) Compute & from equation (25).

(If the coordinates of the blade-element profile on the surface of
revolutlon are to be determined after the first approximation (that is,
if the second approximation is not used), continue with the remaining
steps in this section; otherwise proceed immediately from here to the
next section.)

(4) The R,6 coordinates of the blade cauber line on the surface
of revolution are given by the specified relation between R (or R¥)
and M, and by R6 as a function of M, which is obtained from equa-
tion (28) by numerical integration. ‘

(5) The blade thickness in the circumferential direction is equally
distributed on either side of the blade camber line and is given by
equation (29).

(6) The angular blade spacing A9 1s obtained from the solidity,
according to equation (11).

(7) The nose and tail of the blade are rounded off (fig. 6) in a
manner gulded by experience.
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(8) For plane two-dimensional cascades the M,0 coordinates are
replaced by M,N coordinates where dN replaced the product RA4S.
The solidity o, defined by equation (ll),' thus becomes equal to the
reciprocal of the blade spacing (wh.ich spacing is expressed in units
of the chearacteristic length ¢, s0 that the solidity is equal to
the chord divided by the blade spacing).

IV -~ Second Approximation

The second approximation (part IV) follows after step (3) of the
first approximation (part III).

(1) The angles By and p; are obtained from equetions (34)
and (35) with Xo 5 assumed to equal 0.5, and with B . and &'
equal to B and &, respectively, from the first approximation.

(2) The ratio Xg 5 is cbtained from equation (37).

(3) If desired, the angles By and B} can be recamputed from

equations (34) and (35) using Xg.5 from step (2). This iterative
process can be continued, although the process generally converges
rapidly enough so that only one step in addition to step (2) 1s neces-

sary.

(4) Compute the corrected flow direction By 5 from equations (39)
and (43). The integrals in equation (43) are evaiua'bed by equation (44)
in which the veloeity Qp 5 is given by equation (38) or (38a). To

solve these equations initially, the values of B0.5 and B' are the

B and © obtained by the first approximation.

5) Compute the corrected channel-width ratio & by equa-
tion (45).

(8) The corrected values of By @and B are obtained initially
from quantities that ere based upon pB &and & determined by the first
epproximation. If these quantities (By, Bi, X, 5, and Qy 5, for
example) are recamputed using the corrected values of Bo.s &and B,
new, and presumably better, values of B 0.5 and 8 are obtained.

This iterative process can be continued until the values of Bo.5

and & converge. In general, the process converges rapidly and, in
many ceses, only the first cycle of the second approximation is neces-
8ary.
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(7) The shape of the 0.5-gtreamline on the surface of revolution
is given by the specified relation between R (or R¥*) and M, and by

(R8)g,5 = £(M)

which 1s obtained from equation (46) by numerical integration.

(8) The chennel width 8 R* igs distributed on either side of the

o
0.5~streamline according to the ratio XO.5 » Wwhich is cbtained from
equation (37) using the final corrected values of Bg 5 and 3.

(9) The blade-element profile results when the adjacen’g channel is
placed with the spacing between O.S5-streamlines equal to I— (rig. 8).
o

(10) The blade-element profile is closed by rounding off the nose
and tail in a manner guided by experience.

Boundary-layer corrections. - The blade profiles obtained by the
first and second approximations are based upon the assumption of a non-
viscous fluid. For real, viscous fluids a boundary layer, within which
the viscosity cannot be neglected, builds up along the blade surfaces
and displaces the potential flow. If the preseribed velocities for
which the blade was designed do not have lasrge encugh decelerations to
cause separation of the boundary layer, the thickness of the boundary
layer can be corrected for, at least partially, by machining from the
blade profile an amount equal to the displacement thickness of the
boundary layer, which thickness can be estimated from boundary-layer
theory.

NUMERTCAT. EXAMPLES

Two numerical examples are presented. The first exsmple is for
compressible flow between blade elements of a plene two-dimensional cas-
cade with prescribed velocities along the blade-element profile. The
gsecond example is for compressible flow between blade elements of a
mixed-flow impeller with prescribed velocities along the blade-element
profile. In both examples, the design method has been checked by com-
paring the prescribed velocity distribution with the velocity distri-
bution obtained by stream-filament methods on the resulting blade-
element design.
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First Numerical Example

The first nmumerical example is the design of a blade-element pro-
Tile for a plane two-dimensional cascade that accelerates the fluid by
turning it from B equals zero upstream of the cascade to B equals
60° downstream.

Prescribed conditions. - For any plane two-dimensional cascade the
conditions given by equation (47) apply. Also, for the first numerical
example the following flow conditions upstream and downstream of the
cascade are given:

Qp = 0.750
Bp = 60°
By = ©O°
50 that, from equation (26),
Qy = 0.290
and
®=0.278

Prescribed velocity distribution. - The prescribed velocity dis-
tribution was determined by the following quantities, the magnitudes
of which were based on considerations previously outlined in this

report:

(Qav)n = 0-348 | 1y 41101 and ervor to obtain
(Qa )4 = 0.751 satisfactory values for &, and Jy
'v' -_ -

(%)n = 0.444 chosen so that (%)n =0
(—ii%z)t = - 0.050
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(AQ), = 0.200
(4Q)y = 0.100
(AQ), = 0.400

My = 0.450

so that, from equations (50a), (50b), (51), and (52),

Quy = 0.348 + 0.444 M + 0.371 M2 - 0,412 M3

AQ = 0.200 + 0.888 M -~ 0.984 M2 - 0.004 M3

from which Qy and Q are obtained by equations (49a) and (49b). The
velocity distribution is given in table I and 1s plotted in figure 9.
(Sonic velocity occurs at Q equal to 0.915.) As a result of this
velocity distribution the solidity o 1is equal to 1.215 (from equa-
tion (21)). The pressure difference AP and the average relative
tangential veloclty (Qg)gy are tabulated as functions of M in

table I.

Results. - The values of B and & that determine the blade-
element profile for the first approximation are given in table I
together with the values of By g, 8, and Xg,5 that determine the
blade profile for the second approximation. The blade-element profile
obtained by the second approximation is plotted in figure 10 together
with the streamlines (obtained from equation (36)) and velocity poten-
t1ial lines used by the stream-filament method to estimate velocities
along the blade-element profile. (The blade nose and tail are rounded
off in an arbitrary menner.) The velocities cbtained by the stream-
filament method are compared in figure 9 with the prescribed veloci-
ties. The comparison is considered satisfactory, although the design
method is not recommended for lower solidities.

R The resulting blade-element profiles for the first and second
approximations are campared in figure 11l. The two profiles are sig-
nificantly different and it is concluded that for blade-element soli~ -
dities as low as that for the first numerical example (o = 1.215), the
second approximation is required.
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Second Numerical Example

The second nmumerical example is the design of a blade-element
profile for the impeller of a mixed-flow centrifugal compressor with
prevhirl (Ay) and with forward-curved blades at the impeller tip.

Surface of revolution. ~ Far the mixed-flow impeller of the second
numericel example, the surface of revolution is generated by rotating
the circular arc shown in figure 12 about the axis of the impeller
(Z-axis). At the blade-element nose (n-boundary)

a, =0

Ry = 0.5 Ry
and st the blade-element tail (t-boundary)

o = 45°

Ry = 1.0 Rp

gso that the circular arc subtends an angle of 45° and has a radius Y
equal to 1.707 Rp. The length of the circular arc, or blade-element

chord, is unityy so that (from fig. 12)

Y = loo

LY

from which Rp 1s equal to 0.746.

Transformed coordinates. - For convenience in the stream-filament
check the following transformation of coordinates, which conformally
transforms the surface of revolution into a flat plane, has been
introduced:

dL* = %‘_[II: (54:8.)
and
ap* = %’Li (54b)
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where
M __drR
dL—'R—'Rlsinoc. (552)
and .
Lt Rg
dR
AL = 4L = Rsin o (550)
Ln Bp '
For the surface of revolution in the second numerical example,
1 Y
sin o 2 2 (56)
A/Y - (¥ + R, - R)
so that equation (55b) integrates to give
(Y +R,) - 2 + R,)
AL = b %+ sin”l [%t Fo) - By (Z R || 2.096
,‘ﬁ?n (2Y + By) ReY
Also, equation (54a), combined with equations (55a) and (56), inte-
grates to give
9B
R sin a R (Y + - 2Y + R,)
Rl
1* = = (57)
AL -
e e [ )
2 RY

Equation (57) determines R (or R*) as a function of IL* The quan-
tity L* varies from O at the n-boundary (fig. 13(a)) to 1.0 at the
t-boundary, as does the coordinate M. Equations (56) and (57) deter-
mine o as a function of L™ The quantities R™ and o are tabu-
lated as functions of L* in table II.
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Lines of constant L* and 6* on the surface of revolution and
on the flat transformed plane are shown in figures 13(a) and 13(b),
respectively. The equations in this report were developed for surfaces
of revalution (@ and &0 coordinates), but, if dM is replaced
by R(AL) dL. , the equations also apply to the flat transformed
surfaces.

Prescribed conditions. -~ In addition to the surface of revolution
vhich hes already been described, the following conditions are pre-
scribed:

E* = 15-14R*
Up = 1.5
Ay = 0.2
Ap = 2.0
and
P =1.05

These prescribed conditions were selected to result in (approx:lma‘bely):

(Qav)p = 0.50
By = - 459
5y = 0.85

(Qay)s = 0.90
8y = 0.95

Prescribed veloclty distribution. - The prescribed velocity dis-
tribution for the second numerical example was obtained from equa-
tions (50a) aend (50b) with x instead of M as the independent vari-
able, where

x = 2R* - 1 (s8)
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The prescribed conditions on the veloecity distribution are:

(Qav)n = 0.5
(Qav)t = 0.9

().

dQav) _ agr) -
(E—)t = 0.55} chosen so that (ﬁ?)t =0

0

d.QO
0.35 chosen so that -— - 0.5
dx /n

(AQ), = 0.1
(AQ)y = 0.2
(AQ)y = 0.5

Xy = 0.5

so that, fram equations (50a), (50b), (51), and (52),

0.50 + 0.35x - 0.05x2 + 0.10%x3

Qav

AQ 0.10 + 1.70x - 2.00x2 + 0.40x3

from which Qg and @Q; are obtained by equations (49a) and (49b).

The resulting velocity distribution as a function of L* is given
in teble II and is plotted in figure 14. As a result of this velocity
distribution the solidity ¢ is equal to 2.561 (from equation (21)),
end the number of blades b is 12 (from equation (53)). In order to
obtain this even number of blades, the downstream whirl Ay was
adjusted (as indicated by equation (21)) from the prescribed value
of 2.000 to 1.939. The pressure difference AP and the average rela-
tive tangential velocity (Qg)gy are tebulated as functions of L*
in teble II.

- ¥
| _ 5
- w"“"gf* b o

|
|
|
!
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Results. - The values of B, S, and R* that determine the
blade-element profile for the first epproximation are given as func-
tions of L* in table IT together with the values of Bg.5, &, ZXp.5
and R¥ that determine the blade-element profile for the second
approximation. The blade-element profile cbtained by the second
epproximation is plotted on the surface of revolution in figure lS(a)
and on the flat trensformed IL*6®-plane in figure 13(b). (The nose
and tail of the blade-element asre rounded off in an arbitrary manner.)
The blades are curved forward in the direction of rotation at the
impeller tip, because the prescribed value of Ap 1is greater than Ugp.

The variation in thickness of the blade-element profile at values
of L* +toward the impeller tip is considered rapid because, for the
relatively large values of B that exist at these values of L*, the
difference (tan By - tan Bo) is large, which condition makes inac-

curate the gssumption that AB 1is eonstant circumferentially across
the channel between blade elements (see section on flow direc-

tion Bg.s5). The rapid variation in thickness can and should be eli-
minated by different prescribed veriations in H* and Quy Or both

with L*,

The streamlines and their normals, used by the stream-filament
method to estimate velocities along the blade-element surfaces, are
plotted on the L*0*-plane in figure 13(b).

The velocities obtalned by the stream-filament method on the
L*6*-plane are compared in figure 14 with the prescribed velocities
as a function of L*. The comparison is excellent, except at large
velues of L¥* where the rapid variation in blade-element-profile
thickness and the small radii of curvature along the blade-element
profile at the tip (fig. 13(a)) violate assumptions of the design
method. Thus the design method is limited to prescribed velocities
that result in blade-element profiles with gradual variations in
thickness and with minimm radii of curvature at least approximately
equal to the channel width between profiles.

The resulting blade-element profiles for the first and second
epproximations are compared in figure 15. The two profiles are quite
similar, except near the tail (where neither approximation is satis-
factory because of the rapid variation in blade-element-profile thick-
ness and the small radii of curvature at the blade-element tip).
Although the difference in profiles is small, the difference may be
significant because of the small blade spacing. However, at least for
rough calculations, the first approximation appears to be satisfactory
for centrifugel impellers with blade-element solidities as high as
that of the second numerical example (o ® 2.5).
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SUMMARY OF RESULTS AND CONCLUSIONS

An approximate blade-element-design method is developed for com-
pressible or incompressible nonviscous flow in high-solidity statars or
rotors of axiel-, radiael-, or mixed-flow campressors, turbines, or two-
dimensional cascades. The method is based upon channel-type flow
between blade elements on a specified surface of revolution that is
concentric with the axis of the campressor or turbine. The blade ele-~
ment is designed far prescribed velocities along the blade-element pro-
file as a function of the meridional distance. The blade-element-
design method is developed in two parts, called the first and secand
approximations, either of which may be used to determine the blade-
element profile. The first approximetion, which is simple and rapid,
assumes thet circumferentially across the channel between blade elements
the velocity is constant and the flow direction is equal to that of the
blade-element camber line. The second approximation, which is more com-
plex and less rapid, partially corrects for the variation in velocity
and for the change in flow direction across the channel between blade
elements.

Two numerieal examples are presented. The first example is the
design of a blade-element profile for a plane two-dimensional cascade
in compressible flow with prescribed velocities along the profile. The
second example ik the design of & blade element for the impeller of a
mixed-flow centrifugal compressor. As a result of these numericsal
examples, the following conclusions have been drawn:

1. The blade-element-design method is limited to prescribed velo-
cities that result in blade-element profiles with gradual variations
in thickness and with minimm radii of curvature at least approxi-
mately equal to the channel width between profiles. (The nose and tail
regions of the blade-element proflle are not considered by this blade-
element-design method.)

2. For centrifugel impellers with blade-element solidities as
high as that of the second mmerical example (2.561), the first approxi-
mation eppears to be satisfactory, at least for rough calculations.

3. The blade-element-design method is not recommended for solidi-
ties lower than that of the first example (1.215).

4, For blade-element solidities as low as that for the first
example (1.215), the second approximation is required.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, March 26, 1951.
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APFPENDIX A

SYMBOLS

The following symbols are used in this report:

H*

coefficient, defined by equation (C5)

characteristic velocity, ebsolute stagnation speed of sound
upstream of blade-element row where conditions are uniform
in circumferential direction

coefficient, defined by equation (C6)

number of blade elements (or passages between blade elements)

coefficient, defined by equation (C7)

characteristic length, blade chord measured from n-boundary
to t-boundary along meridional line on surface of revolution

coefficient, defined by equation (51)

coefficient, defined by equation (C3a)

coefficient

exponential, exp (y) = &¥

coefficient, defined by equation (C3b)

total (blocked and unblocked) incremental annulus area normal
to direction of Qy &t blade-element tip, defined by
equation (20)

acceleration due to gravity

incremental height of fluid particle or blade element, meas-
ured normel to surface of revolution ( fig. 5), (dimension-
less, expressed in units of characteristic length c)

height ratio of blade element or f£luid particle on surface
of revolution (fig. 5), AH/(AH)q

Integrand



NACA TN 2408 45

linear

gl.—'h"ca-

L*

H

AQ

R*

value of I if variation in I with X is linear

integrand ratio, defined by equation (Bla)

coefficient, defined by equation (52)

coefficient, defined by equation (37a)
transformed coordinate, defined by equation (55a)

change in L from n-boundary to t-boundary, defined by equa-
tion (55b)

(L-L,) divided by AL (so that IL* varies from O to 1.0
along meridional line between n-boundary and t-boundary),
defined by equation (54a)

coordinate distance along meridional line on surface of revo-
lution (fig. 6, for example) (dimensionless, expressed in
units of characteristic length c¢; varies from O at n-

boundary to 1.0 at t-boundary)

coordinate distance measured normel to M on flat plane of
two-dimensional cascade (dimensionless, expressed in units
of characteristic length c)

static-pressure ratio, p/p,, defined by equation (9)

change in P circumferentially across channel between blade
elements, defined by equation (16)

static (stream) pressure

relative velocity, ‘on surface of revolution (dimensionless,
expressed in units of characteristic velocity aj,) (fig. 3)

change in Q circumferentially across channel between blade
elements, defined by equation (48)

cylindrical coordinate (dimensionless, expressed in units of
characteristic length c) (fig. 3)

ratio, R/RT

distance along streamline on surface of revolution (dimension-
less, expressed in units of characteristic length c)
(fig. 3)
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T static (stream) temperature
Up tip speed of blade element, defined by equation (4)
L total incremental flow rate along surface of revolution with

incremental annulus height AH

X ratio (circumferential distance from O-streamline to point
in channel divided by channel width in circumferential
direction), defined by equation (30)

x defined by equation (58)
Y radius of meridional line on surface of revolution in second

numerical example (dimensionless, expressed in units of
characteristic length c¢) (fig. 12)

Z cylindrical coordinate (dimensionless, expressed in units of
characteristic length ¢) (fig. 3)

a slope of surface of revolution, equation (1) (fig. 3)

B direction on surface of revolution, equation (2) (fig. 3)

OB correction for direction B, defined by equation (39)

B! uncorrected flow direction on surface of revolution, defined

by equation (39)

' g ratio of specific heats

(3] channel-width ratio (circumferential width of channel divided
by circumferential spacing of blades), defined by equa-
tion (12)

5! uncorrected channel-width ratio (from first approximation or
from previous cycle of second epproximation)

e cylindrical coordinate (positive sbout Z-axis according to
right-hand rule) (fig. 3)

JAC) angular spacing of blades about Z-axis, defined by equa-
tion (53) .

6* coordinate 6 divided by AL, defined by equation (54b)

A whirl ratio, defined by equation (8)
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t integrand ratio, defined by equation (Blb)

o static (stream) density

o blade-element solidity, defined by equation (11)

P flow coefficient, defined by equation (19)

v stream function, defined by equation (36)

® angular velocity of rotor (in direction of positive 6)

Subscripts:

a,b,c,d successive points

av mass-weighted average value across channel in 6-direction
between blade elements

D boundary downstream of blade elements where conditions are
uniform in 6-direction

M component along meridional line on surface of revolution

m quantities associated with maximm value of AQ

n n-boundary near nose of blade-element profile (fig. 6, for
example)

o gbsolute stagnation condition upstream of blade-element row
where conditions are uniform in circumferential direction

R,0,2 components in positive R-, 6-, and Z-directions, respectively

T tip (meximum radius) of blade element

t t-boundary near tail of blade-element profile (fig. 6, for
example)

U boundaxry upstream of blade elements where conditions are
uniform in circumferential direction

0 left channel wall, when viewed in direction of Qy (fig. 8)

0.5 0.5-streamline that equally divides flow between blade

elements (fig. 8)




&

el ] )

NACA TN 2408

value at X equals 0.5

right channel wall, when viewed in direction of Qy (fig. 8)
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APPENDIX B

VARTATION IN XO FOR VARTOUS PARABOLIC DISTRIBUTIONS

5

OF INTEGRAND (pﬁ Q cos B') IN X-DIRECTION
(o]

The ratio X, o is defined by equation (36a). This ratio deter-

mines the position of the mean (0.5—) streamline, which equsally divides
the flow between two blade elements. The ratio X, g5 is therefore the

value of X that equally divides the area under the curve of the
integrand I (equal to —‘f— Q cos B') egainst X. If I is assumed to

o]
vary in a parebolic menner (see assumptions of second approximation) and
if I hes the values In at X equals 0, I; at X equals 0.5,

and I, at X equals 1.0, then 2

I* = (1%5)*2(2]%_"%%)}“’4(1‘1922 : (B1)

2

where
* I
I = L P (Bla)
Linear 1
)
I*
1
. b= (B1b)
1o
in which
(1 ) =% (T4I,) (Blc)
linear 1 -2 0 1

e

The integrend I in equation (Bl) is dimensionless, having been
divided by (Ijipear),» ¥hich from equation (Blc) is equal to the value

2
of I at X equals 1/2° if the variation in I with X is linear.
It was convenient to divide I by (Ij4near), 10 order to facilitate

the comparison of Xo 5 for linear and parab%lic variastions in T

with X. The constant I; contained in equation (Bl) is the ratio at

—

)
X equal to 0.5 of the integrand I, for a parabolic veariation in I
z
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to the integrand (Il:_near) for a linear variation in I. Thus,

I_1_ is a direct measure of %-he deviation of the parabolic variation in
12 from a linear variation between the same values of Io and Il' The

ratio ¢ (eguation (Blb)) is a direct measure of the relative magnitudes
of the integrand at X equals O and 1.0.

Substitution of equation (Bl) into equation (36a) results in
(after integration)

8(1-1%))13_5 +6 (2 I_g_ - %:%ng ¥ GZTE)XO.S
=4(1-1;)+3(21é-%}%>+(1—i—£) (2)

2
Equation (BZ) gives X, . @s a function of the parameters 1’{ and ¢
The equation has been solved for & wide range of I1 and £, ®and the
results are plotted in figure 16. B

For infinite, blade-element solidity, Ii_ and £ become 1.0
so that (from fig. 16) X, 5 becomes 0.5 (th€ value assumed, in effect,

for the first approximation). As the solidity decreases from infinity,
Il and t TDbecome different from 1.0 and Xy 5 becomes different from

0.5. In the second approximation of the blade-element—design method,
the value £ can be estimated but the value of I1 cannot be deter-

mined comnveniently. However, f£igure 16 shows that for all values of
£ (but especially for values of t between 1/2 and 2) the value of
Xo 5 given by I1 equal to 1.0 (that is, assuming a linear variation

in I with X) is sufficiently accurate for the approximate methods of
this report, provided Ii lies between 0.8 and 1.2 (that is, provided

the integrand deviates o%ly moderately from a linear variation, as
assumed in the second approximation, for high-solidity blade elements).
And in any event, the values of XO 5 80 determined are more accurate

than the value of 0.5 assumed by the first approximation.

For the two numerical examples of the design method in this report,
" 0. 98<11<1 12 and 0.8<{<2.l. These ranges in 11 and £ resulted

in values of XO 5 between 0.47 and 0.59. Such a range of XO 5 is

typical of high-solidity blade-element profiles with minimum radil of
curvature at least approximetely equal to the channel width between
profiles. (In reference 13, for example, the values of XO. 5 vary
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between 0.50 and 0.58.) Therefore, for high-solidity blade-element
profiles with relatively large radii of curvature that result in

“integrands (‘—39— Q cos p.') that deviate only moderately from linear

o]
variations in the X-direction, the value of X, 5 depends more on the

magnitude of the integrand at X equals 0 and 1.0 (measured by t,
fig. 16), than on the magnitude of the deviation (measured by I1 ’

2
fig. 16). Thus, the value of X, s determined by assuming a linear

variation in T (tha‘t is, be- Q cos B‘) with X 1s sufficiently
0
accurate for the purposes of this report.
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APPENDIX C
VELOCITY DISTRIBUTION IN CIRCUMFERENTTAI, DIRECTION ACROSS
CHATNET, BETWEEN BLADE ELEMENTS
The variation in the relative velocity @Q in the circumferentisal
direction across the channel between high-solidity blade elements is
determined from considerations of the &bsolute irrotationsl motion of
the fluid. Consider a fluid perticle on a surface of revolution

(fig. 5). In the absence of entropy gradients the absolute motion of
the fluid particle is irrotational so that

<) * .9
0= 5 [(R[LI.+Q9) R] - 35 [QM]
which, from equations (11), (12), and (30), becomes

*
O~2RUTsind,+Qesinu.+R*aQ9_iaQM
- Ry Ry oM & %

or, fram equations (6a) and (6c), and with the assumption that for
high-golidity blade elements the variation in B' across the channel
is smgll and that this variation can be neglected in the differential
equation so that '2136.5 is a function of M only,

. 2R'Up sina  Qsin B) g sina o8y s
= + + R Q cos Bo = +
By Ry . S a
x . a o cos Bé.s BQ,
R sin 36.5 BTQI S~ B S}_( (Cl)

Along the streamline,

3@ _3q, 90Qd8 99  9oQ dxX do
. dM~ OM " 06 aM oM ox do aM

and from equations (2a2), (2b), (11), (12), and (30),

3a aq O tamBo.s 3 (c2)

o e - Se—— et



NACA TN 2408 53

The derivative dQ/dM veries in the X-direction across the
channel between blade elements. The values on/d.M and dQl/d.M
at X equals O and 1.0, respectively, are known from the prescribed
variations in Q'O and Ql with M. For high-solidity blade elements,
it 1s assumed that the variation in 4dQ/dM with X can be approximated
by a straight line so that

a9 _
w=B+FX (c3)
where
3%
dQ; dQy
F= 5 " @ (csb)

The differential equation (Cl) when combined with equations (C2) and
(C3) becomes

oQ -

5% - AQ - B(EHFX) - C=0 (c4)
where
B! 8in o dB(') S5

A== cos 36.5 sin BO 5 RT + R cos BO 5 Tam (cs)
B=-——R* cos 6(')5 sin 665 (cs)
C = 2 o sin 8in o - c7
R* U cos BO 5 RT (c7)

Equation (C4) can be integrated in the X-direction to give

Q= Ezo+%(ﬂ+%)+%]exp(m) -% (E+§+FX) -

where the constant of integration has been determined so that
@ equals Qy &t X equals O. The distribution of @ circumfer-

entlally across the channel between blade elements is given by

(c8)

e
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equation (C8). The coefficients B, C, E, and F are given by equa-
tions (C6), (C7), (C3a), and (C3b), respectively. The coefficient A
is selected so that @ 1is equal to Ql when X = 1.0. Thus from
equation (C8),

B - - [0y - ap e (] + ¢ [2oem ()]
(E+§.)[;_-;e§g§1]+§

(09)

which is solved by trial and error to obtain the proper values of A,
that is, the value of A +that satisfies the known value of B.

For small values of A, equetions (C8) and (C9) become

Xz AX3+A—4—2-}1{4-|7...)

Q,=Qoexp(AX) + BEX + C + (BEA+BF+GA)(-,2—I~+§—-

(c8a)
and
2
bl oo (Fadade. . )
B = . 2. — (Cga)
E+(EA+F)(—2]—‘1-+5A—1+2—:-+. )

which forms for equations (C8) and (C9) eliminate "small differences
of large mumbers" that otherwise appear in the numerical calculations
when A is small (]JA] <0.2).
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APPENDIX D
CONSTANT A8 IN DIRECTION OF &

It is proposed to show that AB 1is approximately constant in the
direction of 6 (that is, in the direction of X) if (tan B - tan Bjy g)
is small in the direction of 6 (a condition thet is approached in high-
solidity blades with gradual variations in blade-element-profile thick-
nesg) and if AB is small. Consider the magnitude of AP at some
point (X,M) if, for the same value of M, the initial flow direction
86_5 at XC.S is changed an amount ABO 5 with Xb.S and © remain-

ing unchanged throughout the flow f£ield.

From equations (11), (12), and (30),

o)
9-90=X':—R'T—E (D1e)
and in particular
60 = %o -l (mb)
5~ Y~ S5 Ro

From equations (Dla) and (Dl1b),

9 - (X5 - X, 5)

0.5

BTG

which, after différentiating with respect to M and multiplying by R,
becomes

tan B - ten B, o = gdf (dd(%v(is) B d(Xodl.ds 8)) - (p2e)

Also, for the initial values of p' with the same values of X and b,

o g - v gy o -2 (200)  W0s B) (020)

Because X and & remain the same, equation (D2b) is subtracted from
equation (D2a) to give

tan B - tan B' = tan Bo.g - tan Bo.s (D3)
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But from equation (39),
B' =8 - A8
so that equation (D3) becomes

tan B - tan (B - Aﬁ) = tan BO.S - tan (BO.S - ABO.S)

which for small values of ABO 5 becomes

tanp - tandB L. o | temBy5 - o5
T + ten B tan 4B 0.5 " T+ 8By 5 tam By 5

tan B - (D4)

But

tan B, o = tan g - (tan B - tan B, o)

and, neglecting powers and products of (tan B - tan B ) and OB 5’
which are assumed small, equation (D4) becomes :

tan g - tanpg _ BB -8By 5
1+ tan B tan A8 ~ l+A305tanB

from which
tan A8 = ABO 5

or, because ABO.S is small,

A8 = LB, o (D5)
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TABLE I - FIRST NUMERICAL. EXAMPLE

NACA TN 2408

I:Pla.ne, two-dimensional cascade: BU, 00; Bp> 60°; QD, 0.750;

Qs 0.290; @, 0.278; o, 1.215]

M |Qy |82 |9 | | &P Qg B | B PBos| B |%.5
First approx- Second approxima-
imation tion

0 ]0.348]0.200(0.248|0.448(-0.091| 0 0 [0.850| 2.9]0.890[0.559

1) .3961 .279| .256) .535] -.141! .036 5.3) .765| 7.2 .816} .580

.2| .448| .338) .279| .617| -.189| .088] 11.3| .701{12.3| .751| .586

3| .503} .378| .315}f .692| -.230| .153| 17.7| .661|17.7| .702| .581

.4| .559| .398| .360| .757] -.259| .230! 24.3| .642])23.5| .673| .568

.5 .611] .398| .412| .810f -.275| .314| 30.9| .644(29.6| .666| .549

.6| .659 | .378| .470| .848| -.273] .400| 37.3| .667|35.9| .680| .527

7| .699 | .338| .530| .868| -.252] .482} 43.6| .711|42.1| .716] .506

.8 .730| .279| .590| .869| -.212| .555| 49.5| .779 |47,9 | .769 | .490

.9 .748| .199| .648| .847| ~.154| .613| 55.0| .874(52.8 | .834| .480

1.0} .751} .100| .701) .801| -.078] .650} 59.9| .996]56.4 | .90 | .474

W



TABLE IT - SECOND NUMERICAL EXAMPLE

l:lﬁ.xed-flow impeller for centrifugal compressor: )\U, 0.2; }\D,

1.939; @, 1.05; o, 2.561]

L* M|BR* | B* | o |Quy (22 |G [ | 48 (Qly | B | & |PBos| B |Xo5
Flrst ap- Becond approxima-
proximation tion

0 0.5 |8.0 0 |0.500(0.100(0.450|0.550|-0,060|-0.350| -44.4(0.853|~44.5 [0.860 |0.497

1 .078 .503|7.955 3.5 .502| .111] .447| .558] -.067| -.289)-35.2) .739)-34.9| .741| .506
2 .158| .513|7.817 7.1| .509| .143>| .438| ,581( -.089| -.230|-26.9| .661|-26.5| .664 | .517
3 .239| .530|7.580| 10.8| .521| .195| .423, .618| -.125( ~.159|-17.8| .596|-17.4| .603| .529
4 .324| .555|7.231) 14.6| .538| .263| .406) .670| -.178| -.065] -6.9| .542| -6.5| .555| .542
5 .413| .589(6.753|18.6( .561| .342| .391| .732| -.247| .063| 6.4| .507| 6.8| .529 | .553
NS .509| .634(6.118(22.9( .592| .420| ,382| .803| -.334| .226| 22.4| .505| 22.9| .B37 | .555
.70 .612) .694(5.290(27.8| .634( .482| ,393| .875| -.453| .414| 40.8| .573| 41.6| .617| .541
.75 .668| ,729(4.787)30,1| ,660) .498| 411} .909| -.484) ,5O0L) 49.4| .647| 50.4| .698 | .528
.800 | .726| .770(4.215(32.7| .690; .498 | .442| ,939( -.531| .588| 58.4| .788( 59.6| .843 | .510
.825 | .757] .793]3.900] 34.1) .708| .490] .463) .955| -.551| .622| 61.5| .863| 62.7| .910| .525
.850 | .788) .B17|3.563|35.5{ .727| .476| .489| .9865| -.566| .647| 62.8| .906| 63.8 .940 | .547
875 | .821| .843(3.204|36.9| .749| .455] .b2l} .976| ~,575| .658) 61.5) .884| 61.9 | .921| .581
.900 | .854| .870|2,819|38.4| .772| .425| .560| .985| -.574( ,653| 57.7) .815| 56.5| .825| .570
.925 | .889| .899|2.409|40.0| .799| .386| .606| ,991| ~.560| .631| 52.2| .751; 49.8 ) .745| .553
.950 | .825| .931|1.971|41.6( .BzB| .336| .6B0| .996| -.526( .588| 45.2| .719| 41.0| .704 | .520
.975 | .962| .964|1.502|43.3| .B62| .275| .725| .999| -.466{ .533| 37.4| .T47| 32.6| .T44 | .463
.9875! .981) .982]1.,255)44.1) .880) .232) .760(1.000) -.4253| .482] 33.2) .800) 29.8) .829 | .430
1.0 1.0 (1.0 (1.0 |45.0f .900| .200| .800 (1.0 -.370| .439| 29.2| .908| 25,8 .858 | .4Z2L1
A
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Figure 1. - Channel between blades of typical high-solidity blade row.
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Figure 2., - Streamlines in meridional plane for axial-symmetry solution
of flow through high-solidity blade row of figure 1.
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Figure 4. - Bign convantion foar typical inflow and outflow machines,
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AH = H*(AH)\-Z\

% am
\\\\\\\\s Center line (between
adjacent streamlines

ridional plane)

in me
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yd /
\
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dRr

R4 a

7
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Figure 5. - Fluid particle on surface of revolution.
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Figure 6. ~ View of passage between two blade-element profiles on 6M-plane
showing parameters used in first approximation.
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Figure 7. - Fluld atrip between blade elements on surface of revolution.
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. fL Channel spacing at
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Figure 8. - View of passage between blade-element profiles on 6M-plane showing
parameters used in second approximation.
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Flgure 9. - Comparison of prescribed velocitles for first numerical example with velocities obtained
by streame: ament check of profile obtained by second approximation.
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Pigure 10. - Blade-elememt profile for first numerical oxample showing streamlines and velocity potential lines

used in stream-Pillament check.
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Approximation

Second
—_——— First

\
n-boundary
L _ 1 _d 1 _ ] R I |
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Figure 11. - Comparison of blade-element profiles obtained by first and second approximations for
first numerical example.
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Y = 1.707 Ry

Ry = Rp = 0.746

& = 05 By | ~WE

Figure 12. - Circular arc used to generate surface of revolution for second
numerical example. Variation in H* along circular arc also shown.
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(a) Surface of revolution.

Figure 13, - Blade-element profile for second mumerical example,
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n-boundary
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(b) Transformed L*9*-plane showing streamlines
used in stream-filament check.

Figure 13. - Concluded. Blade-element profile for second
numerical example.
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sment check' of profile obtained by second approximation.
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t-boundary
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Flgure 15. - Comparison of blade-~element profiles obtalned by first and
second approximations for second numerlcal example,
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